Morpho-Physiological Adaptations of Drought-Resilient and Susceptible Brassica napus Genotypes to Sulphur-Coated Urea Fertilization

Authors

  • Ibtesam Zafar Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Nanak Khan Department of Agronomy, Balochistan Agriculture College, Quetta, Balochistan, Pakistan.
  • Nasir Mehmood Khan Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Muhammad Khalid Soil Fertility and Agriculture Research, Multan, Punjab, Pakistan.
  • Muhammad Kashif Crop Science Institute, National Agricultural Research Centre (NARC), Islamabad, Pakistan.
  • Ghulam Mujtaba Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Khuram Waqas Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan.
  • Saeeda Naz National Aromatic Plants and Herbs Program (NMAPAHP) PGRI, NARC Islamabad.
  • Muhammad Amaid Khan Department of Agronomy, University of Haripur, Haripur, KP, Pakistan.
  • Haider Hayat Khan Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v2i02.229

Keywords:

Brassica Napus Genotypes, Nitrogen Use Efficiency, Plant Morpho-Physiology, Sulphur Coated Urea, Drought Tolerance, Water Scarce Adaptation, Climate Change

Abstract

This study focuses on screening drought-tolerant and sensitive genotypes of Brassica napus L. (an important oilseed crop in Pakistan) and investigates their morpho-physiological responses to sulphur-coated urea (SCU) under drought conditions. Genotypes were categorized into highly drought tolerant (HDT), moderately drought tolerant (MDT), and highly drought sensitive (HDS) through hierarchical cluster analysis. Out of 100 genotypes, 20 were HDT, 30 were MDT, and 50 were HDS. Three genotypes from each category were subjected to two drought levels (80% field capacity and 50% field capacity) and were treated with SCU, urea, or no nitrogen. Key parameters such as leaf relative water content, chlorophyll content, excised leaf water loss, and membrane stability index (MSI) were recorded. Drought-tolerant genotypes performed well in both germination and seedling stages, showing higher excised leaf water loss, relative water content, chlorophyll values, seed weight, and yield-related traits. Initially, five concentrations of PEG-6000 (5% to 25%) were tested to determine optimal levels for screening drought tolerance. Results showed that 25% PEG-6000 induced 50% drought injury index (DII), making it the most promising concentration. Various morpho-physiological traits such as germination rate, shoot/root length, fresh and dry weight, and drought tolerance indices were assessed. The study concluded that drought-tolerant genotypes responded positively to SCU application, making them suitable for cultivation in water-scarce regions of Pakistan.

References

Abd El-Azeiz, E., El Mantawy, R., & Albakry, A. (2021). Effect Of different Forms and Rates of Slow Release Urea Fertilizers on Growth, Yield and Quality of Maize Plants (Zea mays L.) تأثيرصور ومعدلات مختلفه من اسمدة اليوريا بطيئة الذوبان على نمو ومحصول وجودة الذرة الشامية. Journal of Soil Sciences and Agricultural Engineering, 12(10), 639–645. https://doi.org/10.21608/jssae.2021.205761

Ahmad, A., Yaseen, M., Asghar, H. N., & Basra, S. M. A. (2022). Comparative Effect of Various Organic Extracts Coated Urea Fertilizer on the Release Pattern of Ammonium and Nitrate in the Soil at Different Time Intervals. Journal of Soil Science and Plant Nutrition, 22(2), 2603–2611. https://doi.org/10.1007/s42729-022-00830-y

Ali, Q., Daud, M. K., Haider, M. Z., Ali, S., Rizwan, M., Aslam, N., Noman, A., Iqbal, N., Shahzad, F., Deeba, F., Ali, I., & Zhu, S. J. (2017). Seed priming by sodium nitroprusside improves salt tolerance in wheat ( Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiology and Biochemistry, 119, 50–58. https://doi.org/10.1016/j.plaphy.2017.08.010

Al-Mushhin, A. A. M., Qari, S. H., Fakhr, M. A., Alnusairi, G. S. H., Alnusaire, T. S., ALrashidi, A. A., Latef, A. A. H. A., Ali, O. M., Khan, A. A., & Soliman, M. H. (2021). Exogenous Myo-Inositol Alleviates Salt Stress by Enhancing Antioxidants and Membrane Stability via the Upregulation of Stress Responsive Genes in Chenopodium quinoa L. Plants, 10(11), 2416. https://doi.org/10.3390/plants10112416

Altaf, A., Zhu, X., Zhu, M., Quan, M., Irshad, S., Xu, D., Aleem, M., Zhang, X., Gull, S., Li, F., Shah, A. Z., & Zada, A. (2021). Effects of Environmental Stresses (Heat, Salt, Waterlogging) on Grain Yield and Associated Traits of Wheat under Application of Sulfur-Coated Urea. Agronomy, 11(11), 2340. https://doi.org/10.3390/agronomy11112340

Al-Taher, F. M., & Al-Bourky, R. H. A. (2020). EFFECT OF COATED UREA AND NITROGEN LEVELS ON NITROGEN UPTAKE BY WHEAT (TRITICUM AESTIVUM L.). Plant Archives, 20(2), 1552-1556.

Arif, M. R., Islam, M. T., & Robin, A. H. K. (2019). Salinity Stress Alters Root Morphology and Root Hair Traits in Brassica napus. Plants, 8(7), 192. https://doi.org/10.3390/plants8070192

Attri, M., Gupta, M., Kour, S., Thakur, N. P., & Sharma, R. (2023). Effect of slow-release coated urea on growth, yield and economics of wheat (Triticum aestivum) under subtropical conditions of Jammu. Indian Journal of Ecology, 50(2), 313-318. http://dx.doi.org/10.55362/IJE/2023/3895

Batool, M., El-Badri, A. M., Hassan, M. U., Haiyun, Y., Chunyun, W., Zhenkun, Y., Jie, K., Wang, B., & Zhou, G. (2022). Drought Stress in Brassica napus: Effects, Tolerance Mechanisms, and Management Strategies. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-021-10542-9

Beig, B., Niazi, M. B. K., Jahan, Z., Hussain, A., Zia, M. H., & Mehran, M. T. (2020). Coating materials for slow release of nitrogen from urea fertilizer: a review. Journal of Plant Nutrition, 43(10), 1510–1533. https://doi.org/10.1080/01904167.2020.1744647

Chelli-Chaabouni, A., Mosbah, A. B., Maalej, M., Gargouri, K., Gargouri-Bouzid, R., & Noureddine Drira. (2010). In vitro salinity tolerance of two pistachio rootstocks: Pistacia vera L. and P. atlantica Desf. Environmental and Experimental Botany, 69(3), 302–312. https://doi.org/10.1016/j.envexpbot.2010.05.010

Chen, X., Min, D., Yasir, T. A., & Hu, Y.-G. (2012). Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crops Research, 137, 195–201. https://doi.org/10.1016/j.fcr.2012.09.008

Choudhary, A., Kaur, N., Sharma, A., & Kumar, A. (2021). Evaluation and screening of elite wheat germplasm for salinity stress at the seedling phase. Physiologia Plantarum, 173(4), 2207–2215. https://doi.org/10.1111/ppl.13571

Dąbrowski, P., Baczewska, A. H., Pawluśkiewicz, B., Paunov, M., Alexantrov, V., Goltsev, V., & Kalaji, M. H. (2016). Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. Journal of Photochemistry and Photobiology B: Biology, 157, 22–31. https://doi.org/10.1016/j.jphotobiol.2016.02.001

Dawar, K., Dawar, A., Tariq, M., Mian, I. A., Muhammad, A., Farid, L., Khan, S., Khan, K., Fahad, S., Danish, S., Al-Ghamdi, A. A., Elshikh, M. S., & Tahzeeb-ul-Hassan, M. (2024). Enhancing nitrogen use efficiency and yield of maize (Zea mays L.) through Ammonia volatilization mitigation and nitrogen management approaches. BMC Plant Biology, 24(1). https://doi.org/10.1186/s12870-024-04749-7

Ding, T., Yang, Z., Wei, X., Yuan, F., Yin, S., & Wang, B. (2018). Evaluation of salt-tolerant germplasm and screening of the salt-tolerance traits of sweet sorghum in the germination stage. Functional Plant Biology, 45(10), 1073. https://doi.org/10.1071/fp18009

Essa, R., Afifi, A., & Ashry, S. (2021). Influence of sulfur coated urea and algae fertilization on productivity of some leguminous crops in sandy soils. Bulletin of the National Research Centre, 45(1). https://doi.org/10.1186/s42269-021-00521-1

Fang, Y., Li, J., Jiang, J., Geng, Y., Wang, J., & Wang, Y. (2017). Physiological and epigenetic analyses of Brassica napus seed germination in response to salt stress. Acta Physiologiae Plantarum, 39(6). https://doi.org/10.1007/s11738-017-2427-4

Farouk, S., & Arafa, S. A. (2018). Mitigation of salinity stress in canola plants by sodium nitroprusside application. Spanish Journal of Agricultural Research, 16(3), e0802–e0802. https://doi.org/10.5424/sjar/2018163-13252

Fertahi, S., Ilsouk, M., Zeroual, Y., Oukarroum, A., & Barakat, A. (2021). Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. Journal of Controlled Release, 330, 341–361. https://doi.org/10.1016/j.jconrel.2020.12.026

Ghafoor, I., Habib-ur-Rahman, M., Ali, M., Afzal, M., Ahmed, W., Gaiser, T., & Ghaffar, A. (2021). Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Environmental Science and Pollution Research, 28(32), 43528–43543. https://doi.org/10.1007/s11356-021-13700-4

Gil-Ortiz, M., McDougall, N. D., Cabello, P., Marzo, M., & Ramos, E. (2021). Sedimentary architecture of a Middle Ordovician embayment in the Murzuq Basin (Libya). Marine and Petroleum Geology, 135, 105339–105339. https://doi.org/10.1016/j.marpetgeo.2021.105339

Gupta, M., Attri, M., Sharma, B. C., Thakur, N. P., Sharma, R., & Kour, S. (2022). Efficacy of neem and zinc coated urea on productivity and economics of wheat (Triticum aestivum). Journal of Plant Nutrition, 1–13. https://doi.org/10.1080/01904167.2022.2087086

Hamdallah, S. I., Zoqlam, R., Erfle, P., Blyth, M., Alkilany, A. M., Dietzel, A., & Qi, S. (2020). Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. International Journal of Pharmaceutics, 584, 119408. https://doi.org/10.1016/j.ijpharm.2020.119408

Haseeb-ur-Rehman, Asghar, M. G., Ikram, R. M., Hashim, S., Hussain, S., Irfan, M., Mubeen, K., Ali, M., Alam, M., Ali, M., Haider, I., Shakir, M., Skalicky, M., Alharbi, S. A., & Alfarraj, S. (2022). Sulphur coated urea improves morphological and yield characteristics of transplanted rice (Oryza sativa L.) through enhanced nitrogen uptake. Journal of King Saud University - Science, 34(1), 101664. https://doi.org/10.1016/j.jksus.2021.101664

Hniličková, H., Hnilička, F., Orsák, M., & Hejnák, V. (2019). Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant, Soil and Environment, 65(No. 2), 90–96. https://doi.org/10.17221/620/2018-pse

Hussain, N., Ghaffar, A., Zafar Ullah Zafar, Javed, M., Kausar Hussain Shah, Noreen, S., Manzoor, H., Iqbal, M., Hassan, I. F., Bano, H., Hafiza Saima Gul, Misbah Aamir, Khalid, A., Sohail, Y., Ashraf, M., & Athar, H.-R. (2021). Identification of novel source of salt tolerance in local bread wheat germplasm using morpho-physiological and biochemical attributes. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-90280-w

Julkowska, M. M., & Testerink, C. (2015). Tuning plant signaling and growth to survive salt. Trends in Plant Science, 20(9), 586–594. https://doi.org/10.1016/j.tplants.2015.06.008

Kumar, V., Sharma, A., Kohli, S. K., Bali, S., Sharma, M., Kumar, R., Bhardwaj, R., & Thukral, A. K. (2019). Differential distribution of polyphenols in plants using multivariate techniques. Biotechnology Research and Innovation, 3(1), 1–21. https://doi.org/10.1016/j.biori.2019.03.001

Li, W., Zhang, H., Zeng, Y., Xiang, L., Lei, Z., Huang, Q., Li, T., Shen, F., & Cheng, Q. (2020). A Salt Tolerance Evaluation Method for Sunflower ( Helianthus annuus L.) at the Seed Germination Stage. Scientific Reports, 10(1), 10626. https://doi.org/10.1038/s41598-020-67210-3

Lin, Y., Liu, Z., Shi, Q., Wang, X., Wei, M., & Yang, F. (2012). Exogenous nitric oxide (NO) increased antioxidant capacity of cucumber hypocotyl and radicle under salt stress. Scientia Horticulturae, 142, 118–127. https://doi.org/10.1016/j.scienta.2012.04.032

Liu, W., Price, S., Bennett, G., Maxwell, T. M. R., Zhao, C., Walker, G., & Bunt, C. (2022). A landscape review of controlled release urea products: Patent objective, formulation and technology. Journal of Controlled Release, 348, 612–630. https://doi.org/10.1016/j.jconrel.2022.06.009

Long, W. H., Pu, H. M., Zhang, J. F., Qi, C. K., & Zhang, X. K. (2013). Screening of Brassica napus for salinity tolerance at germination stage. Chin. J. Oil Crop Sci, 35(3), 271-275.

Ma, Q., Yao, Y., Zheng, G. L., Zhang, X. B., Ye, S. C., Xu, S. Q., & Zhu, X. K. (2021). Effect of application patterns of sulfur coated slow-released fertilizer on canopy structure, photosynthetic characteristics and yield of winter wheat after rice. https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&filename=MLZW202104011&dbname=CJFDLAST2021

Massonnet, P., Jean, Upert, G., Degueldre, M., Morsa, D., Smargiasso, N., Mourier, G., Gilles, N., Quinton, L., & Pauw, E. D. (2016). Ion Mobility-Mass Spectrometry as a Tool for the Structural Characterization of Peptides Bearing Intramolecular Disulfide Bond(s). Journal of the American Society for Mass Spectrometry, 27(10), 1637–1646. https://doi.org/10.1007/s13361-016-1443-8

Minato, T., Satoru Nirasawa, Sato, T., Yamaguchi, T., Midori Hoshizaki, Inagaki, T., Nakahara, K., Tadashi Yoshihashi, Ozawa, R., Yokota, S., Miyuki Natsui, Souichi Koyota, Taku Yoshiya, Kumiko Yoshizawa‐Kumagaye, Motoyama, S., Tetsuo Gotoh, Nakaoka, Y., Penninger, J., Watanabe, H., & Imai, Y. (2020). B38-CAP is a bacteria-derived ACE2-like enzyme that suppresses hypertension and cardiac dysfunction. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-14867-z

Mustafa, A., Athar, F., Khan, I., Chattha, M. U., Nawaz, M., Shah, A. N., Mahmood, A., Batool, M., Aslam, M. T., Jaremko, M., Abdelsalam, N. R., Ghareeb, R. Y., & Hassan, M. U. (2022). Improving crop productivity and nitrogen use efficiency using sulfur and zinc-coated urea: A review. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.942384

Podder, S., Ray, J., Das, D., & Sarker, B. C. (2020). Effect of salinity (NaCl) on germination and seedling growth of mungbean (Vigna radiata L.). Journal of Bioscience and Agriculture Research, 24(2), 2012–2019. https://doi.org/10.18801/jbar.240220.246

Premachandra, G. S., Saneoka, H., & Ogata, S. (1990). Cell membrane stability, an indicator of drought tolerance, as affected by applied nitrogen in soyabean. The Journal of Agricultural Science, 115(1), 63–66. https://doi.org/10.1017/S0021859600073925

Priya, K., Sharma, P., Choudhary, O., & Sardana, V. (2021). Regulation of salinity tolerance in Brassica juncea (L.) introgression lines: Osmoprotectants, antioxidative molecules and ionic content. GSC Advanced Research and Reviews, 6(3), 116–131. https://doi.org/10.30574/gscarr.2021.6.3.0038

Puvanitha, S., & Mahendran, S. (2017). Effect of salinity on plant height, shoot and root dry weight of selected rice cultivars. Scholars Journal of Agriculture and Veterinary Sciences, 4(4), 126-131.

Rehman Zia, U. U., Rashid, T. ur, Awan, W. N., Hussain, A., & Ali, M. (2020). Quantification and technological assessment of bioenergy generation through agricultural residues in Punjab (Pakistan). Biomass and Bioenergy, 139, 105612. https://doi.org/10.1016/j.biombioe.2020.105612

Sabagh, A. E., Hossain, A., Barutcular, C., Islam, M. S., Ratnasekera, D., Kumar, N., Meena, R. S., Gharib, H. S., Saneoka, H., & da Silva, J. A. T. (2019). Drought and salinity stress management for higher and sustainable canola (’Brassica napus’ L.) production: A critical review. Australian Journal of Crop Science, 13(1), 88–96. https://search.informit.org/doi/10.3316/informit.338175500181658

Sadiq, M., Mazhar, U., Shah, G. A., Hassan, Z., Iqbal, Z., Mahmood, I., Wattoo, F. M., Khan Niazi, M. B., Bran, A., Arthur, K., Ali, N., & Rashid, M. I. (2021). Zinc Plus Biopolymer Coating Slows Nitrogen Release, Decreases Ammonia Volatilization from Urea and Improves Sunflower Productivity. Polymers, 13(18), 3170. https://doi.org/10.3390/polym13183170

Sattar, B., Ahmad, S., Daur, I., Hussain, M. B., Ali, M., Ul Haq, T., ... & Bakhtawer, M. (2021). Bioactive-sulfur coated diammonium phosphate improves nitrogen and phosphorus use efficiency and maize (Zea mays L.) yield. Journal of Environmental and Agricultural Science, 23 (3&4), 23-29. https://jeas.agropublishers.com/wp-content/uploads/2022/02/23-29-569-bioactive-sulphur.pdf

Shaan, A., Shamsuddin, R., Mohamed Mahmoud Nasef, Zaireen, W., Abbasi, A., & Hamad AlMohamadi. (2022). Sulfur enriched slow-release coated urea produced from inverse vulcanized copolymer. Science of the Total Environment, 846, 157417–157417. https://doi.org/10.1016/j.scitotenv.2022.157417

Shaan, A., Shamsuddin, R., Nasef, M. M., Krivoborodov, E. G., Ahmad, S., Zanin, A. A., Mezhuev, Y. O., & Abbasi, A. (2021). A Degradable Inverse Vulcanized Copolymer as a Coating Material for Urea Produced under Optimized Conditions. Polymers, 13(22), 4040–4040. https://doi.org/10.3390/polym13224040

Shah, S. H., Islam, S., & Mohammad, F. (2022). Sulphur as a dynamic mineral element for plants: a review. Journal of Soil Science and Plant Nutrition, 22(2), 2118–2143. https://doi.org/10.1007/s42729-022-00798-9

Shivay, Y. S., Pooniya, V., Prasad, R., Pal, M., & Bansal, R. (2016). Sulphur-coated urea as a source of sulphur and an enhanced efficiency of nitrogen fertilizer for spring wheat. Cereal Research Communications, 44(3), 513–523. https://doi.org/10.1556/0806.44.2016.002

Shoukat, M. R., Bohoussou, Y. N., Ahmad, N., Saleh, I. A., Okla, M. K., Elshikh, M. S., Ahmad, A., Haider, F. U., Khan, K. S., Adnan, M., Hussain, Q., & Riaz, M. W. (2023). Growth, Yield, and Agronomic Use Efficiency of Delayed Sown Wheat under Slow-Release Nitrogen Fertilizer and Seeding Rate. Agronomy, 13(7), 1830–1830. https://doi.org/10.3390/agronomy13071830

Singh, A., Kumar, G., Mishra, B. K., Singh, A. K., Shahi, S., & Sengar, V. S. (2021). Study on effects of ordinary urea and neem coated urea on nutrients uptake by rice crop. Deleted Journal, 10(11), 1037–1039.

Swify, S., Mažeika, R., Baltrušaitis, J., Drapanauskaitė, D., & Barčauskaitė, K. (2023). Review: Modified Urea Fertilizers and Their Effects on Improving Nitrogen Use Efficiency (NUE). Sustainability, 16(1), 188–188. https://doi.org/10.3390/su16010188

Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W., & Su, Z. (2017). agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research, 45(W1), W122–W129. https://doi.org/10.1093/nar/gkx382

Wu, H., Guo, J., Wang, C., Li, K., Zhang, X., Yang, Z., Li, M., & Wang, B. (2019). An Effective Screening Method and a Reliable Screening Trait for Salt Tolerance of Brassica napus at the Germination Stage. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00530

Yoshida, S. (1972). Physiological Aspects of Grain Yield. Annual Review of Plant Physiology, 23(1), 437–464. https://doi.org/10.1146/annurev.pp.23.060172.002253

ZHANG, Y. F., SHEN, Y. W., WANG, J. T., YANG, L., ZHANG, Q., CHEN, J. Q., ... & LIU, Z. H. (2020). The fitness of nitrogen release of sulphur resin coated urea with wheat and maize growth and the optimal proportion in total fertilizer application. Journal of Plant Nutrition and Fertilizers, 26(2), 245-255. https://dx.doi.org/10.11674/zwyf.19082

Zhu, J., Cai, D., Wang, J., Cao, J., Wen, Y., He, J., Zhao, L., Wang, D., & Zhang, S. (2021). Physiological and anatomical changes in two rapeseed (Brassica napus L.) genotypes under drought stress conditions. Oil Crop Science, 6(2), 97–104. https://doi.org/10.1016/j.ocsci.2021.04.003

Downloads

Published

2024-11-24

How to Cite

Zafar, I., Khan, N., Khan, N. M., Muhammad Khalid, Muhammad Kashif, Mujtaba, G., Waqas, K., Saeeda Naz, Khan, M. A., & Khan, H. H. (2024). Morpho-Physiological Adaptations of Drought-Resilient and Susceptible Brassica napus Genotypes to Sulphur-Coated Urea Fertilization. Indus Journal of Bioscience Research, 2(02), 546–563. https://doi.org/10.70749/ijbr.v2i02.229