Advanced Strategies for Mitigating Postharvest Deterioration in Soft Fruits

Authors

  • Mohsin Raza Institute of Horticultural Sciences, University of Agriculture Faisalabad, Pakistan
  • Muhammad Asad Saleem Horticultural Research Station, Sahiwal, Pakistan
  • Mudassar Naseer Horticultural Research Station, Sahiwal, Pakistan
  • Amjad Farooq Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus 61100, Pakistan
  • Shakir Ali School of Landscape Architecture, Beijing Forestry University, China
  • Abdul Hafi Nutrien Ag Solutions, Saskatoon, Saskatchewan, Canada.
  • Hafiz Usama Noor Post Harvest Research Centre, Ayub Agricultural Research Institute, Faisalabad, Pakistan
  • Muhammad Hamdan Rashid Post Harvest Research Centre, Ayub Agricultural Research Institute, Faisalabad, Pakistan
  • Iman Shafquat Institute of Horticultural Sciences, University of Agriculture Faisalabad, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v2i02.169

Keywords:

Postharvest, Soft Fruit, Shelf Life, 1-Methylcyclopropene

Abstract

Preventing disease incidence in soft fruit post-harvest presents a substantial challenge. This study examines traditional methods and emerging technologies employed to address this issue. Conventional approaches typically regulate fruit ripening and pathogen proliferation through low-temperature storage and modified atmosphere techniques. Various methodologies such as irradiation, brief heat treatments, and chemical applications (e.g., calcium, 1-Methylcyclopropene, nitric oxide). Physical methods like heat treatments and irradiation promise to extend soft fruit's shelf-life. Biological control and treatments that stimulate the fruit's innate responses exhibit potential, particularly considering fungicide restrictions. Before commercial implementation, it is crucial to comprehend the diverse facets of these techniques. Progress in plant metabolic engineering may diminish fruit susceptibility to diseases. Swift cooling and low-temperature storage (at 0°C with 90-95% relative humidity) are indispensable for preserving soft fruit and necessitate integrated pre-harvest and post-harvest strategies. While emerging technologies may complement low-temperature storage and modified atmospheres, evaluating their feasibility and constraints on a commercial scale is imperative. Testing novel techniques under low-temperature conditions is essential for exploring alternatives that enhance existing methods. Further research is warranted to elucidate fruit-pathogen interactions, encompassing factors of pathogen virulence and the regulation of natural fruit-defense strategies. This information would be invaluable for the identification of candidate genes for breeding, the development of biotechnological approaches, and the establishment of consistent and efficacious methods rooted in the activation of the fruit's innate defense system.

References

Al-Dairi, M., Pathare, P. B., Al-Yahyai, R., & Opara, U. L. (2022). Mechanical damage of fresh produce in postharvest transportation: Current status and future prospects. Trends in Food Science & Technology, 124, 195–207. https://doi.org/10.1016/j.tifs.2022.04.018

Avenot, H. F., Morgan, D. P., Quattrini, J., & Michailides, T. J. (2020). Resistance to Thiophanate-Methyl in Botrytis cinerea Isolates From Californian Vineyards and Pistachio and Pomegranate Orchards. Plant Disease, 104(4), 1069–1075. https://doi.org/10.1094/pdis-02-19-0353-re

Azam, M., Ejaz, S., Rehman, R. N., Khan, M., & Qadri, R. (2019). Postharvest quality management of strawberries. Strawberry-pre-and post-harvest management techniques for higher fruit quality.

Azri, R., Lamine, M., Bensalem-Fnayou, A., Hamdi, Z., Mliki, A., Ruiz-Lozano, J. M., & Aroca, R. (2024). Genotype-Dependent Response of Root Microbiota and Leaf Metabolism in Olive Seedlings Subjected to Drought Stress. Plants, 13(6), 857–857. https://doi.org/10.3390/plants13060857

Bano, A., Gupta, A., Prusty, M. R., & Kumar, M. (2023). Elicitation of Fruit Fungi Infection and Its Protective Response to Improve the Postharvest Quality of Fruits. Stresses, 3(1), 231–255. https://doi.org/10.3390/stresses3010018

Barkai-Golan, R. (1990). Postharvest disease suppression by atmospheric modifications. Food preservation by modified atmospheres, 237-264.

Belay, Z. A. (2017). Modelling and optimization of active modified atmosphere packaging for pomegranate arils (Doctoral dissertation, Stellenbosch: Stellenbosch University).

Bera, S. K., Rani, K., Kamdar, J. H., Pandey, M. K., H. Desmae, Holbrook, C. C., Burow, M. D., N. Manivannan, Bhat, R. S., Jasani, M. D., Bera, S. S., Badigannavar, A. M., G. Sunkad, Wright, G. C., P. Janila, & Varshney, R. K. (2022). Correction to: Genomic Designing for Biotic Stress Resistant Peanut. Springer EBooks, C1–C1. https://doi.org/10.1007/978-3-030-91035-8_9

Bhardwaj, R., Pareek, S., Mani, S., Domínguez-Avila, J. A., & González-Aguilar, G. A. (2022). A Melatonin Treatment Delays Postharvest Senescence, Maintains Quality, Reduces Chilling Injury, and Regulates Antioxidant Metabolism in Mango Fruit. Journal of Food Quality, 2022, 1–18. https://doi.org/10.1155/2022/2379556

Chen, W., Modi, D., & Picot, A. (2023). Soil and Phytomicrobiome for Plant Disease Suppression and Management under Climate Change: A Review. Plants, 12(14), 2736–2736. https://doi.org/10.3390/plants12142736

De Simone, N., Capozzi, V., Amodio, M. L., Colelli, G., Spano, G., & Russo, P. (2021). Microbial-based Biocontrol Solutions for Fruits and Vegetables: Recent Insight, Patents, and Innovative Trends. Recent Patents on Food, Nutrition & Agriculture, 12(1), 3–18. https://doi.org/10.2174/2212798412666210125141117

Droby, S., Zhimo, V. Y., Wisniewski, M., & Freilich, S. (2022). The pathobiome concept applied to postharvest pathology and its implication on biocontrol strategies. Postharvest Biology and Technology, 189, 111911. https://doi.org/10.1016/j.postharvbio.2022.111911

Fallik, E., Lurie, S., Jamieson, L., & Woolf, A. (2020). Advances in using heat for disinfection/disinfestation of horticultural produce. In Advances in postharvest management of horticultural produce (pp. 215-250). Burleigh Dodds Science Publishing.

Head, J. R. (2022). Role of environmental variability, individual behavior, and public health policy in the transmission dynamics of emerging infectious disease. University of California, Berkeley.

Hewett, E. W. (2013). POSTHARVEST INNOVATION: CURRENT TRENDS AND FUTURE CHALLENGES IN THE GLOBAL MARKET. Acta Horticulturae, 989, 25–37. https://doi.org/10.17660/actahortic.2013.989.1

Horvitz, S. (2017). Postharvest handling of berries. Postharvest handling, 107-123.

Huynh, K. N. (2021). Extending the shelf life of fresh horticultural produce under industrial settings by modified atmosphere packaging systems (Doctoral dissertation, University Of Tasmania).

Ji, T., Luca Languasco, Salotti, I., Li, M., & Rossi, V. (2023). Temporal Dynamics and Dispersal Patterns of the Primary Inoculum of Coniella diplodiella, the Causal Agent of Grape White Rot. Plant Disease, 108(3), 757–768. https://doi.org/10.1094/pdis-08-23-1600-re

Kahramanoglu, I., 2023. Postharvest Physiology and Handling of Horticultural Crops. CRC Press.

Kargwal, R., Garg, M., Singh, V., Garg, R., & Kumar, N. (2020). Principles of modified atmosphere packaging for shelf life extension of fruits and vegetables: An overview of storage conditions. International Journal of Chemical Studies, 8(3), 2245–2252. https://doi.org/10.22271/chemi.2020.v8.i3af.9545

Deepshikha, Kumari, B., Devi, E. P., Sharma, G., Rawat, S., & Jaiswal, J. P. (2017). Irradiation as an Alternative Method for Post-harvest Disease Management: An Overview. International Journal of Agriculture, Environment and Biotechnology, 10(5), 625. https://doi.org/10.5958/2230-732x.2017.00077.8

Langer, S. E., Marina, M., Francese, P., Civello, P. M., Martínez, G. A., & Villarreal, N. M. (2022). New insights into the cell wall preservation by 1-methylcyclopropene treatment in harvest-ripe strawberry fruit. Scientia Horticulturae, 299, 111032–111032. https://doi.org/10.1016/j.scienta.2022.111032

Lebelo, K., Malebo, N., Mochane, M. J., & Masinde, M. (2021). Chemical Contamination Pathways and the Food Safety Implications along the Various Stages of Food Production: A Review. International Journal of Environmental Research and Public Health, 18(11), 5795. https://doi.org/10.3390/ijerph18115795

Li, P., Liang, C., Jiao, J., Ruan, Z., Sun, M., Fu, X., Zhao, J., Wang, T., & Zhong, S. (2024). Exogenous priming of chitosan induces resistance in Chinese prickly ash against stem canker caused by Fusarium zanthoxyli. International Journal of Biological Macromolecules, 259, 129119–129119. https://doi.org/10.1016/j.ijbiomac.2023.129119

Liu, R., Ji, N., Zhang, N., Wang, R., Li, Y., Lei, J., & Zhou, R. (2023). Postharvest Quality Exploration of “Crystal” Grapes in Karst Mountainous Area: Regulatory Effect of High Concentration 1-MCP Fumigation. Agronomy, 13(10), 2450–2450. https://doi.org/10.3390/agronomy13102450

López-García, E., Benítez-Cabello, A., Rodríguez-Gómez, F., Martín-Arranz, V., Garrido-Fernández, A., & Arroyo-López, F. N. (2022). Influence of 1-methylcyclopropene (1-MCP) on the processing and microbial communities of spanish-style and directly brined green table olive fermentations. Fermentation, 8(9), 441.

Lufu, R., Ambaw, A., & Opara, U. L. (2020). Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Scientia Horticulturae, 272, 109519. https://doi.org/10.1016/j.scienta.2020.109519

Ma, Y., Dias, M. C., & Freitas, H. (2020). Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.591911

Hassan, K. (2010). Postharvest handling of fruits and vegetables. Department of Horticulture, Bangladesh Agricultural University, Mymensingh, 2202, 2-3.

Massee, G. (1891). British Fungi: Phycomycetes and Ustilagineae. L. Reeve and Company.

Montemayor, A. M. (2022). Studies on Interactions of UV Radiation with Food Ingredients for Improved Quality and Safety (Master's thesis, University of Maryland, College Park).

Alston, D., & Thomson, S. (2000). The Home Orchard Pest Management Guide.

Nguyen, V. T. B., Nguyen, D. H. H., & Nguyen, H. V. H. (2020). Combination effects of calcium chloride and nano-chitosan on the postharvest quality of strawberry (Fragaria x ananassa Duch.). Postharvest Biology and Technology, 162, 111103. https://doi.org/10.1016/j.postharvbio.2019.111103

Palmieri, D., Ianiri, G., Conte, T. M., Castoria, R., Lima, G., & Filippo De Curtis. (2022). Influence of Biocontrol and Integrated Strategies and Treatment Timing on Plum Brown Rot Incidence and Fungicide Residues in Fruits. Agriculture, 12(10), 1656–1656. https://doi.org/10.3390/agriculture12101656

Parthasarathy, S., Lakshmidevi, P., Yashodha, P., Gopalakrishnan, C., (2024). Pests and Diseases in Vegetable Crops. CRC Press.

Petrasch, S. (2020). Genetics of Strawberry Postharvest Fruit Quality and Resistance to Necrotrophic Fungi. University of California, Davis.

Pott, D. M., Vallarino, J. G., & Osorio, S. (2020). Metabolite Changes during Postharvest Storage: Effects on Fruit Quality Traits. Metabolites, 10(5), 187. https://doi.org/10.3390/metabo10050187

Premjit, Y., Sruthi, N. U., Pandiselvam, R., & Kothakota, A. (2022). Aqueous ozone: Chemistry, physiochemical properties, microbial inactivation, factors influencing antimicrobial effectiveness, and application in food. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1054–1085. https://doi.org/10.1111/1541-4337.12886

Qadri, R., Azam, M., Khan, I., Yang, Y., Ejaz, S., Akram, M. T., & Khan, M. A. (2020). Conventional and modern technologies for the management of post-harvest diseases. Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches, 137-172. https://doi.org/10.1007/978-3-030-35955-3_7

QU, G., BA, L., WANG, R., LI, J., MA, C., JI, N., & CAO, S. (2022). Effects of melatonin on blueberry fruit quality and cell wall metabolism during low temperature storage. Food Science and Technology, 42. https://doi.org/10.1590/fst.40822

Rahman, M. M., Ronald, Bowyer, M. C., Vuong, V. Q., Golding, J. B., Kirkman, T., & Penta Pristijono. (2023). Efficacy of Lemon Myrtle Essential Oil as a Bio-Fungicide in Inhibiting Citrus Green Mould. Plants, 12(21), 3742–3742. https://doi.org/10.3390/plants12213742

Ramalingam, S., Le Myint, Z., Ahn, S. Y., Ryu, J. A., Lee, S., & Yun, H. K. (2024). UV-C treatment elicits resistant responses against Botrytis cinerea infection and the improvement of fruit characteristics in grapevines. Horticulture, Environment, and Biotechnology, 65(4), 707–724. https://doi.org/10.1007/s13580-024-00602-w

Attar, F. R., Sedaghat, N., Atena Pasban, Yeganehzad, S., & Hesarinejad, M. A. (2023). Modified atmosphere packaging with chitosan coating to prevent deterioration of fresh in-hull Badami’s pistachio fruit. Chemical and Biological Technologies in Agriculture, 10(1). https://doi.org/10.1186/s40538-023-00393-9

Riseh, R. S., Hassanisaadi, M., Vatankhah, M., Soroush, F., & Varma, R. S. (2022). Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. International Journal of Biological Macromolecules, 222, 1589–1604. https://doi.org/10.1016/j.ijbiomac.2022.09.278

Sabır, F. K., A. Sabır, & Kara, Z. (2010). EFFECTS OF MODIFIED ATMOSPHERE PACKING AND ETHANOL TREATMENT ON QUALITY OF MINIMALLY PROCESSED TABLE GRAPES DURING COLD STORAGE. Bulgarian Journal of Agricultural Science, 16(6), 678–686.

Sánchez, G. J., Contigiani, E. V., Coronel, M. B., Alzamora, S. M., García-Loredo, A., & Nieto, A. B. (2021). Study of UV-C treatments on postharvest life of blueberries “O’Neal” and correlation between structure and quality parameters. Heliyon, 7(6), e07190. https://doi.org/10.1016/j.heliyon.2021.e07190

Sharma, N., (2020). Managing Postharvest Diseases: Classical versus New Technologies, Bio-Management of Postharvest Diseases and Mycotoxigenic Fungi. CRC Press, pp. 7-56.

Shoji, K., Schudel, S., Shrivastava, C., Onwude, D., & Defraeye, T. (2022). Optimizing the postharvest supply chain of imported fresh produce with physics-based digital twins. Journal of Food Engineering, 329, 111077. https://doi.org/10.1016/j.jfoodeng.2022.111077

Singh, D., & Singh, R.P., (2021). Management of Postharvest Diseases of Fruits and Vegetables through Chemicals, Postharvest Handling and Diseases of Horticultural Produce. CRC Press, pp. 57-78.

Stoner, G. D., Wang, L. S., & Casto, B. C. (2008). Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries. Carcinogenesis, 29(9), 1665-1674. https://doi.org/10.1093/carcin/bgn142

Sun, J., Pang, C., Cheng, X., Yang, B., Jin, B., Jin, L., Qi, Y., Sun, Y., Chen, X., Liu, W., Cao, H., & Chen, Y. (2023). Investigation of the antifungal activity of the dicarboximide fungicide iprodione against Bipolaris maydis. Pesticide Biochemistry and Physiology, 190, 105319. https://doi.org/10.1016/j.pestbp.2022.105319

Sun, S., Lian, S., Feng, S., Dong, X., Wang, C., & Liang, W. (2017). Effects of Temperature and Moisture on Sporulation and Infection by Pseudoperonospora cubensis. Plant Disease, 101(4), 562–567. https://doi.org/10.1094/pdis-09-16-1232-re

Tane, M.-C., (2022). The main fungal diseases in strawberries crop-review.

Thakur, K., Singh, D., & Rajput, R. (2022). Effects of food additives and preservatives and shelf life of the processed foods. J. Curr. Res. Food Sci, 3, 11-22. https://www.foodresearchjournal.com/article/67/3-1-21-879.pdf

Triunfo, M., Guarnieri, A., Ianniciello, D., Coviello, L., Vitti, A., Nuzzaci, M., Salvia, R., Scieuzo, C., & Falabella, P. (2023). Hermetia illucens, an innovative and sustainable source of chitosan-based coating for postharvest preservation of strawberries. IScience, 26(12), 108576–108576. https://doi.org/10.1016/j.isci.2023.108576

Vicente, A. R., Civello, P. M., Martínez, G. A., Powell, A. L. T., Labavitch, J. M., & Chaves, A. R. (2005). Control of postharvest spoilage in soft fruit. Stewart Postharvest Review, 1(4), 1-11. https://doi.org/10.2212/spr.2005.4.1

Walther, G., Wagner, L., & Kurzai, O. (2020). Outbreaks of Mucorales and the Species Involved. Mycopathologia, 185(5), 765–781. https://doi.org/10.1007/s11046-019-00403-1

Wang, C. Y. (2003). Maintaining postharvest quality of raspberries with natural volatile compounds. International Journal of Food Science and Technology, 38(8), 869–875. https://doi.org/10.1046/j.0950-5423.2003.00758.x

Wang, F., Xiao, J., Zhang, Y., Li, R., Liu, L., & Deng, J. (2021). Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mould in postharvest strawberry fruit. Postharvest Biology and Technology, 174, 111456. https://doi.org/10.1016/j.postharvbio.2020.111456

Wang, K., Li, T., Chen, S., Li, Y., & Rashid, A. (2020). The biochemical and molecular mechanisms of softening inhibition by chitosan coating in strawberry fruit (Fragaria x ananassa) during cold storage. Scientia Horticulturae, 271, 109483–109483. https://doi.org/10.1016/j.scienta.2020.109483

Weber, R. W., & Petridis, A. (2023). Fungicide resistance in Botrytis spp. and regional strategies for its management in Northern European strawberry production. BioTech, 12(4), 64. https://doi.org/10.3390/biotech12040064

Xu, J., Chao, J., Li, T., Yan, T., Wu, S., Wu, M., Zhao, B., & Wang, R. (2020). Near-Zero-Energy Smart Battery Thermal Management Enabled by Sorption Energy Harvesting from Air. ACS Central Science, 6(9), 1542–1554. https://doi.org/10.1021/acscentsci.0c00570

Zhang, X., Gao, Z., Zhang, X., Bai, W., Zhang, L., Pei, H., & Zhang, Y. (2020). Control effects of Bacillus siamensis G-3 volatile compounds on raspberry postharvest diseases caused by Botrytis cinerea and Rhizopus stolonifer. Biological Control, 141, 104135. https://doi.org/10.1016/j.biocontrol.2019.104135

Downloads

Published

2024-11-12

How to Cite

Raza , M., Saleem , M. A., Naseer , M., Farooq , A., Ali , S., Hafi , A., Noor , H. U., Rashid , M. H., & Shafquat , I. (2024). Advanced Strategies for Mitigating Postharvest Deterioration in Soft Fruits. Indus Journal of Bioscience Research, 2(02), 311–322. https://doi.org/10.70749/ijbr.v2i02.169