Examining the Therapeutic Effects of Bioactive Compounds in Orange and Pomegranate for the Management of Acne Vulgaris
DOI:
https://doi.org/10.70749/ijbr.v2i02.167Keywords:
Acne Vulgaris, Orange Peel Extract, Pomegranate, Antioxidants, Skin Health, Bioactive Compounds, Antimicrobial, Anti-InflammatoryAbstract
Background: Acne vulgaris is the most common inflammatory skin disorder that affects millions of people globally. Various conventional treatments like topical retinoid as-well-as antibiotics are commonly used, but they have many limitations and side effects. But nutraceuticals are gaining much attention for their therapeutic potential in overall skin health and management of skin disorders especially acne.
Objective: The main objective of this review was to examine the therapeutic potential of bioactive compounds present in orange and pomegranate for the management of acne vulgaris, due to their antioxidant, antimicrobial and anti-inflammatory properties.
Materials and Methods: A comprehensive literature review was conducted using databases such as PubMed and Google Scholar. Studies examining the bioactive compounds of orange and pomegranate and their effects on acne-related factors such as inflammation, sebum production, and bacterial growth were included.
Results: Results from the present review demonstrates that pomegranate contains bioactive compounds like ellagic acid and punicalagins, while orange contains flavonoids, hesperidin and vitamin C that have strong antimicrobial, anti-inflammatory, and antioxidant properties against acne-causing bacteria like P. acnes and Staphylococcus aureus.
Conclusion: Nutraceuticals derived from natural food sources like pomegranate and orange demonstrate the therapeutic potential against the acne causing bacteria. Although existing studies suggested their beneficial effects but further clinical trials are still needed in order to fully establish their efficacy as well as to develop the optimized formulations for the oral and topical use against the treatment of acne
References
Dawson, A. L., & Dellavalle, R. P. (2013). Acne vulgaris. BMJ, 346(may08 1), f2634–f2634. https://doi.org/10.1136/bmj.f2634
Ak, M. (2019). A comprehensive review of acne vulgaris. J. Clin. Pharm, 1(1), 17-45. https://innovationinfo.org/articles/JCP/JCP-103.pdf
Brown, S. K., & Shalita, A. R. (1998). Acne vulgaris. The Lancet, 351(9119), 1871-1876.
Cruz, S. A., Vecerek, N., & Elbuluk, N. (2023). Targeting Inflammation in Acne: Current Treatments and Future Prospects. American Journal of Clinical Dermatology, 24(5), 681–694. https://doi.org/10.1007/s40257-023-00789-1
Fox, L., Csongradi, C., Aucamp, M., du Plessis, J., & Gerber, M. (2016). Treatment Modalities for Acne. Molecules, 21(8), 1063. https://doi.org/10.3390/molecules21081063
Sorg, O., Kuenzli, S., & Saurat, J. H. (2007). Side Effects and Pitfalls in Retinoid Therapy. Basic and Clinical Dermatology, 225–248. https://doi.org/10.3109/9781420021189.013
Karadag, A. S., Aslan Kayıran, M., Wu, C. ‐Y., Chen, W., & Parish, L. C. (2020). Antibiotic resistance in acne: changes, consequences and concerns. Journal of the European Academy of Dermatology and Venereology, 35(1), 73–78. https://doi.org/10.1111/jdv.16686
Hamza, M., Tahir, Z., Rasheed, I., Akram, H. I., Fahad Saad Alhodieb, Fatima, G., Khalid, A., Shafiq, E., Rafiq, M., & Ahmed, F. (2024). Bacteriostatic Potential of Ginger, Garlic, and Fennel Seeds Against Helicobacter Pylori. Journal of Health and Rehabilitation Research, 4(1), 12–18. https://doi.org/10.61919/jhrr.v4i1.314
Hamza, M., Zubair, A., Habib, A., Noor, Q., Ijaz, A., Khalid, A., Javaid, M., Awan, A., Rasheed, I., & Sana, R. (2023). Anti-inflammatory and Antioxidative Potential of Herbs and Fruits in the Management of Inflammatory Bowel Disease Beyond Medications. Journal of Health and Rehabilitation Research, 3(2), 822–828. https://doi.org/10.61919/jhrr.v3i2.254
Bedi, M. K., & Shenefelt, P. D. (2002). Herbal Therapy in Dermatology. Archives of Dermatology, 138(2). https://doi.org/10.1001/archderm.138.2.232
Sharma, D. (2024). The role of nutrition in the management of health and diseases. Indian Journal of Natural Products and Resources, 15(2). https://doi.org/10.56042/ijnpr.v15i2.11660
Ramsis, T., Refat, M., Elseedy, H., & Fayed, E. A. (2024). The role of current synthetic and possible plant and marine phytochemical compounds in the treatment of acne. RSC Advances, 14(33), 24287–24321. https://doi.org/10.1039/d4ra03865g
Tuchayi, S. M., Makrantonaki, E., Ganceviciene, R., Dessinioti, C., Feldman, S. R., & Zouboulis, C. C. (2015). Acne vulgaris. Nature Reviews Disease Primers, 1(1), 1–20. https://doi.org/10.1038/nrdp.2015.29
Hoath, S. B., & Maibach, H. I. (Eds.). (2003). Neonatal skin: structure and function. CRC press.
Qidwai, A., Pandey, M., Pathak, S., Kumar, R., & Dikshit, A. (2017). The emerging principles for acne biogenesis: A dermatological problem of puberty. Human Microbiome Journal, 4, 7–13. https://doi.org/10.1016/j.humic.2017.05.001
Sardana, K. (2014). Follicular disorders of the face. Clinics in Dermatology, 32(6), 839–872. https://doi.org/10.1016/j.clindermatol.2014.02.024
Zhu, Y., Yu, X., & Cheng, G. (2023). Human skin bacterial microbiota homeostasis: A delicate balance between health and disease. Mlife, 2(2). https://doi.org/10.1002/mlf2.12064
Alexandre Rocha, M., Sousa Costa, C., & Bagatin, E. (2014). Acne vulgaris: an inflammatory disease even before the onset of clinical lesions. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy)(Discontinued), 13(3), 162-167.
Lee, C.-J., Chen, L.-G., Liang, W.-L., & Wang, C.-C. (2017). Multiple Activities of Punica granatum Linne against Acne Vulgaris. International Journal of Molecular Sciences, 18(1), 141. https://doi.org/10.3390/ijms18010141
Benchagra, L., Berrougui, H., Islam, M. O., Ramchoun, M., Boulbaroud, S., Hajjaji, A., Fulop, T., Ferretti, G., & Khalil, A. (2021). Antioxidant Effect of Moroccan Pomegranate (Punica granatum L. Sefri Variety) Extracts Rich in Punicalagin against the Oxidative Stress Process. Foods, 10(9), 2219. https://doi.org/10.3390/foods10092219
Valero-Mendoza, A. G., Meléndez-Rentería, N. P., Chávez-González, M. L., Flores-Gallegos, A. C., Wong-Paz, J. E., Govea-Salas, M., Zugasti-Cruz, A., & Ascacio-Valdés, J. A. (2023). The whole pomegranate (Punica granatum. L), biological properties and important findings: A review. Food Chemistry Advances, 2, 100153. https://doi.org/10.1016/j.focha.2022.100153
Ju, J., Kim, J., Choi, Y., Jin, S., Kim, S., Son, D., & Shin, M. (2022). Punicalagin-Loaded Alginate/Chitosan-Gallol Hydrogels for Efficient Wound Repair and Hemostasis. Polymers, 14(16), 3248. https://doi.org/10.3390/polym14163248
Mo, J., Panichayupakaranant, P., Kaewnopparat, N., Songkro, S., & Reanmongkol, W. (2013). Topical Anti-inflammatory Potential of Standardized Pomegranate Rind Extract and Ellagic Acid in Contact Dermatitis. Phytotherapy Research, 28(4), 629–632. https://doi.org/10.1002/ptr.5039
Afandi, N., & Sahudin, S. (2022). Natural active ingredients used in topical cosmetic formulations for anti- ageing: A systematic review. International Journal of Pharmaceuticals Nutraceuticals and Cosmetic Science, 5(1), 67–78. https://doi.org/10.24191/ijpnacs.v5i1.05
YOSHIMURA, M., WATANABE, Y., KASAI, K., YAMAKOSHI, J., & KOGA, T. (2005). Inhibitory Effect of an Ellagic Acid-Rich Pomegranate Extract on Tyrosinase Activity and Ultraviolet-Induced Pigmentation. Bioscience, Biotechnology, and Biochemistry, 69(12), 2368–2373. https://doi.org/10.1271/bbb.69.2368
Revan, K., Mahendrakumar, C. B., & Kiran, B. (2015). Formulation and evaluation of hydroalcoholic extract ofBerberis aristataDC. andPunica granatumLinn. for anti-acne action. Research Journal of Pharmacy and Technology, 8(11), 1548–1548. https://doi.org/10.5958/0974-360x.2015.00276.0
Dimitrijevic, J., Tomovic, M., Jovana Bradic, Petrovic, A., Vladimir Jakovljevic, Marijana Andjic, Jelena Živković, Suzana Đorđević Milošević, Igor Simanic, & Dragicevic, N. (2024). Punica granatum L. (Pomegranate) Extracts and Their Effects on Healthy and Diseased Skin. Pharmaceutics, 16(4), 458–458. https://doi.org/10.3390/pharmaceutics16040458
Xu, Q., Chen, L.-L., Ruan, X., Chen, D., Zhu, A., Chen, C., Bertrand, D., Jiao, W.-B., Hao, B.-H., Lyon, M. P., Chen, J., Gao, S., Xing, F., Lan, H., Chang, J.-W., Ge, X., Lei, Y., Hu, Q., Miao, Y., & Wang, L. (2012). The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 45(1), 59–66. https://doi.org/10.1038/ng.2472
Meléndez-Martínez, A. J., Britton, G., Vicario, I. M., & Heredia, F. J. (2008). The complex carotenoid pattern of orange juices from concentrate. Food Chemistry, 109(3), 546–553. https://doi.org/10.1016/j.foodchem.2008.01.003
Bowe, W. P., & Logan, A. C. (2010). Clinical implications of lipid peroxidation in acne vulgaris: old wine in new bottles. Lipids in Health and Disease, 9(1), 141. https://doi.org/10.1186/1476-511x-9-141
Klock, J., Ikeno, H., Ohmori, K., Nishikawa, T., Vollhardt, J., & Schehlmann, V. (2005). Sodium ascorbyl phosphate shows in vitro and in vivo efficacy in the prevention and treatment of acne vulgaris. International Journal of Cosmetic Science, 27(3), 171–176. https://doi.org/10.1111/j.1467-2494.2005.00263.x
Beylot, C., Auffret, N., Poli, F., Claudel, J. P., Leccia, M. T., Del Giudice, P., & Dreno, B. (2014). Propionibacterium acnes: an update on its role in the pathogenesis of acne. Journal of the European Academy of Dermatology and Venereology, 28(3), 271-278.
Abbas, M. A. M., Elgamal, E. E. A. E., Zaky, M. S., & Elsaie, M. L. (2022). Microneedling with topical vitamin C versus microneedling with topical insulin in the treatment of atrophic post‐acne scars: A split‐face study. Dermatologic Therapy, 35(5). https://doi.org/10.1111/dth.15376
Hempel, J., Schädle, C. N., Leptihn, S., Carle, R., & Schweiggert, R. M. (2016). Structure related aggregation behavior of carotenoids and carotenoid esters. Journal of Photochemistry and Photobiology A: Chemistry, 317, 161–174. https://doi.org/10.1016/j.jphotochem.2015.10.024
Roth, E., Manhart, N., & Wessner, B. (2004). Assessing the antioxidative status in critically ill patients. Current Opinion in Clinical Nutrition & Metabolic Care, 7(2), 161-168.
Sebghatollahi, Z., Ghanadian, M., Agarwal, P., Ghaheh, H. S., Mahato, N., Yogesh, R., & Hejazi, S. H. (2022). Citrus Flavonoids: Biological Activities, Implementation in Skin Health, and Topical Applications: A Review. ACS Food Science & Technology, 2(9), 1417–1432. https://doi.org/10.1021/acsfoodscitech.2c00165
Čižmárová, B., Hubková, B., Tomečková, V., & Birková, A. (2023). Flavonoids as Promising Natural Compounds in the Prevention and Treatment of Selected Skin Diseases. International Journal of Molecular Sciences, 24(7), 6324. https://doi.org/10.3390/ijms24076324
Xian, D., Guo, M., Xu, J., Yang, Y., Zhao, Y., & Zhong, J. (2021). Current evidence to support the therapeutic potential of flavonoids in oxidative stress-related dermatoses. Redox Report, 26(1), 134–146. https://doi.org/10.1080/13510002.2021.1962094
Lim, H.-J., Kang, S.-H., Song, Y.-J., Jeon, Y.-D., & Jin, J.-S. (2021). Inhibitory Effect of Quercetin on Propionibacterium acnes-induced Skin Inflammation. International Immunopharmacology, 96, 107557. https://doi.org/10.1016/j.intimp.2021.107557
Santos, J. S., & Mateus Pereira Gonzatto. (2023). Citrus Flavonones into nanotechnology-based formulations to skin treatment. Ars Pharmaceutica (Internet), 65(1), 84–92. https://doi.org/10.30827/ars.v65i1.29433
Casarini, T. P. A., Frank, L. A., Pohlmann, A. R., & Guterres, S. S. (2020). Dermatological applications of the flavonoid phloretin. European journal of pharmacology, 889, 173593. https://doi.org/10.1016/j.ejphar.2020.173593
McLaughlin, J., Watterson, S., Layton, A. M., Bjourson, A. J., Barnard, E., & McDowell, A. (2019). Propionibacterium acnes and Acne Vulgaris: New Insights from the Integration of Population Genetic, Multi-Omic, Biochemical and Host-Microbe Studies. Microorganisms, 7(5), 128. https://doi.org/10.3390/microorganisms7050128
Amer, R. I., Ezzat, S. M., Aborehab, N. M., Ragab, M. F., Mohamed, D., Hashad, A., Attia, D., Salama, M. M., & El Bishbishy, M. H. (2021). Downregulation of MMP1 expression mediates the anti-aging activity of Citrus sinensis peel extract nanoformulation in UV induced photoaging in mice. Biomedicine & Pharmacotherapy, 138, 111537. https://doi.org/10.1016/j.biopha.2021.111537
Lee, H. J., Im, A-Rang., Kim, S.-M., Kang, H.-S., Lee, J. D., & Chae, S. (2018). The flavonoid hesperidin exerts anti-photoaging effect by downregulating matrix metalloproteinase (MMP)-9 expression via mitogen activated protein kinase (MAPK)-dependent signaling pathways. BMC Complementary and Alternative Medicine, 18(1). https://doi.org/10.1186/s12906-017-2058-8
Hewage, S. R. K. M., Piao, M. J., Kang, K. A., Ryu, Y. S., Han, X., Oh, M. C., Jung, U., Kim, I. G., & Hyun, J. W. (2016). Hesperidin Attenuates Ultraviolet B-Induced Apoptosis by Mitigating Oxidative Stress in Human Keratinocytes. Biomolecules & Therapeutics, 24(3), 312–319. https://doi.org/10.4062/biomolther.2015.139
Tamaru, E., Watanabe, M., & Nomura, Y. (2020). Dietary immature Citrus unshiu alleviates UVB- induced photoaging by suppressing degradation of basement membrane in hairless mice. Heliyon, 6(6), e04218. https://doi.org/10.1016/j.heliyon.2020.e04218
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Indus Journal of Bioscience Research
This work is licensed under a Creative Commons Attribution 4.0 International License.