Evaluation of Variability, Genetic Advancement and their Correlation in Triticum Aestivum L.
Keywords:
Wheat, Correlation, Genetic Coefficient of Variation, Phenotypic Coefficient of Variation, Genetic Advance, VariabilityAbstract
The current research was conducted with the objective to estimate
evaluation of variability, genetic advance and correlations in wheat.
Sixty-four wheat advance lines were grown in alpha lattice designed
during 2022-2023 at Cereal Crops Research Institute (CCRI), Pirsabak
Nowshera, Pakistan. Significant differences among genotypes were
recorded shown through analysis of variance. Days to heading ranged
from 116 days to138 days, flag leaf area ranged from 18cm2-40cm2,
plant height ranged from 84 cm -111 cm, tiller m-2 ranged from 136-424,
grain yield from 3240 kg/ ha to 6051 kg/ ha and thousand grain weight
ranged from 31g-52 g. Maximum value of GCV reported for tiller per
spike (20.2), while minimum value recorded for days to heading (2.70),
while high PCV value recorded for1000 grain weight was (25.02), while
lowest value recorded for grain yield (0.27). Magnitude of heritability
was higher for grain yield (2358) and it was recorded moderate for
thousand grain weight (0.50). Maximum value of genetic gain recorded
for tiller-2 (65.38) and it was minimum for days to heading (3.73). The
findings indicated strong and positive link between grain yield with plant
height (r=0.30**), days to heading have a negative correlation with
qualities that contribute to production, such as grain yield and 1000-grain
weight.
References
Ahmed, H. G. M. D., & Mustafa, S. (2017).
Designate the inheritance pattern of yield related
indices in spring wheat. J. Agric. Basic Sci, 2(01).
Allard, R.W. (1960). Principles of Plant Breeding.
John Willey and Sons Inc., New York.
Arya, S., Mishra, D. K., & Bornare, S. S. (2013).
Screening genetic variability in advance lines for
drought tolerance of bread wheat (Triticum
aestivum). The Bioscan, 8(4), 1193-1196.
Bilgrami, S. S., Fakheri, B. A., Shariati J., V.,
Razavi, K., Mahdinezhad, N., Tavakol, E.,
Ramandi, H. D., & Ghaderian, M. (2018).
Evaluation of agro-morphological traits related to
grain yield of Iranian wheat genotypes in drought
stress and normal irrigation conditions. Australian
Journal of Crop Science, 12(05), 738–748.
https://doi.org/10.21475/ajcs.18.12.05.pne878
Crespo-Herrera, L. A., Crossa, J., Huerta-Espino, J.,
Vargas, M., Mondal, S., Velu, G., Payne, T. S.,
Braun, H., & Singh, R. P. (2018). Genetic Gains for
Grain Yield in CIMMYT’s Semi‐Arid Wheat Yield
Trials Grown in Suboptimal Environments. Crop
Science, 58(5),
–1898.
https://doi.org/10.2135/cropsci2018.01.0017
FAO (2020). Crop Prospects and Food
Situation, Quarterly Global Report, no. 2.
Gao, F., Ma, D., Guo, Y., Rasheed, A., Dong, Y.,
Xiao, Y., Xia, X., Wu, X., & He, Z. (2017). Genetic
Progress in Grain Yield and Physiological Traits in
Chinese Wheat Cultivars of Southern Yellow and
Huai Valley since 1950. Crop Science, 57(2), 760
https://doi.org/10.2135/cropsci2016.05.0362
Giraldo, P., Benavente, E., Manzano-Agugliaro, F.,
& Gimenez, E. (2019). Worldwide Research Trends
on Wheat and Barley: A Bibliometric Comparative
Analysis. Agronomy, 9(7),
https://doi.org/10.3390/agronomy9070352
Jamali, R., & Jamali, K. D. (2008). Correlation and
regression studies in semi-dwarf spring wheat
(Triticum aestivum L).
Johnson, H. W., Robinson, H. F., & Comstock, R.
E. (1955). Genotypic and Phenotypic Correlations
in
Soybeans and Their Implications in
Selection1. Agronomy
Journal, 47(10),
https://doi.org/10.2134/agronj1955.000219620047
x
Kamaran, S., Khan, T. M., Bakhsh, A., Hussain, N.,
Mahpara, S., Manan, A., ... & Iqbal, M. (2019).
ASSESSMENT OF MORPHOLOGICAL AND
MOLECULAR MARKER BASED GENETIC
DIVERSITY AMONG ADVANCED UPLAND
COTTON GENOTYPES. Pakistan Journal of
Agricultural
Sciences, 56(3),
-652.
https://doi.org/10.21162/PAKJAS/19.8267
Khan, W. U., Mohammad, F., Khan, F. U., Zafar, F.
Z., & Ghuttai, G. (2015). Correlation studies among
productions traits in bread wheat under rainfed
conditions. Am. Eurasian J. Agric. Environ.
Sci, 15(8),
-2063.
https://doi.org/10.5829/idosi.aejaes.2015.15.10.12
Kwon, S. H., & Torrie, J. H. (1964). Hertibility and
interrelationship among traits of two soyabean
populations. Crop
Science, 4(2),
–198.
https://doi.org/10.2135/cropsci1964.0011183x0004
x
Laghari, A. K., Sial, A., Afzal Arain, M., Mirbahar,
A., Pirzada, A., Dahot, M., & Mangrio, S. (2010).
Heritability Studies of Yield and Yield Associated
Traits in Bread Wheat. Pak. J. Bot, 42(1), 111–115.
https://pakbs.org/pjbot/PDFs/42(1)/PJB42(1)111.p
df
Li, D., Cheng, T., Zhou, K., Zheng, H., Yao, X.,
Tian, Y., Zhu, Y., & Cao, W. (2017). WREP: A
wavelet-based technique for extracting the red edge
position from reflectance spectra for estimating leaf
and canopy chlorophyll contents of cereal
crops. Isprs Journal of Photogrammetry and
Remote
Sensing, 129,
–117.
https://doi.org/10.1016/j.isprsjprs.2017.04.024
Mahpara, S. (2018). Analysis of generation means
for some metric plant traits in two wheat (Triticum
aestivum
L.)
hybrids. Pure
and Applied
Biology, 7(1).
https://doi.org/10.19045/bspab.2018.70012
Rahman, M, A., Kabir, M, L., Hasanuzzaman, M.,
Rumi, R, H., Afrose, M. T. (2016). Study of
variability in bread wheat (Triticum aestivum L.).
International
Journal
Agricultural
of
Agronomy
and
Research (IJAAR). 8, 66-76.
content/uploads/2022/10/IJAAR-V8-No5-p66
Shewry, P. R., & Hey, S. J. (2015). The Contribution
of Wheat to Human Diet and Health. Food and
Energy
Security, 4(3),
https://doi.org/10.1002/fes3.64
Copyright © 2024. IJBR Published by Indus Publisher
–202.
Page | 62
IJBR Vol. 2 Issue. 2 2024
This work is licensed under a Creative Common Attribution 4.0 International License.
`
Variability, Genetic Advancement and their Correlation in Triticum Aestivum L.
Naz et al.,
Stamatov, S., Andonov, B., Chipilski, R. &
Deshev, M. (2018). Genetic Variability and
Genetic Advance of the Parameters of Water
Exchange in Peanut Varieties (Arachis
hypogaea
L.)
Selection. JOJ
from
the
Horticulture
Bulgarian
Arboriculture, 1(3).
https://doi.org/10.19080/jojha.2018.01.555563
USDA (2022). World Agricultural Production
and Global Market Analysis.
Wani, S. H., Sheikh, F. H., Najeeb, S., Sofi, M.
A., Iqbal, A., & Kordrostami, M. (2018).
Genetic variability study in Bread Wheat
(Triticum Aestivum L.) under Temperate
Conditions. Current Agriculture Research
Journal, 6(3),
–277.
https://doi.org/10.12944/carj.6.3.06
Selvendran, R. R., Stevens, B. J. H., & Pont,
M. S. D. (1988). Dietary Fiber: Chemistry,
Analysis, and Properties. Advances in Food
Research,
&
–209.
https://doi.org/10.1016/s0065-2628(08)60167
Waqas, M., Faheem, M., Khan, A. S., Shehzad,
M., & Ansari, M. A. A. (2014). Estimation of
heritability and genetic advance for some yield
traits in eight F2 populations of wheat
(Triticum aestivum L). Sci. Lett, 2(2), 43-47.
FAO. (2018). FAO production year book, 54,
-75.
Laghari, K. A., Sial, M. A., Arain, M. A.,
Mirbahar, A. A., Pirzada, A. J., Dahot, M. U.,
& Mangrio, S. M. (2010). Heritability studies
of yield and yield associated traits in bread
wheat. Pak.
J.
Bot, 42(1),
-115.
https://pakbs.org/pjbot/PDFs/42(1)/PJB42(1)1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Indus Journal of Bioscience Research
This work is licensed under a Creative Commons Attribution 4.0 International License.