Antibiotic Susceptibility Pattern of Escherichia Coli at Tertiary Care Hospital, Islamabad
Keywords:
Escherichia coli, Urinary tract infections, Antibiotic resistance, Pathogenicity, Kirby-Bauer disc diffusion, Nitrofurantoin, CLSI, CiprofloxacinAbstract
Objective: The objectives of this study are; 1. To comprehensively investigate the antibiotic susceptibility pattern of Escherichia coli, focusing on its virulence factors to understand its pathogenicity and address the challenges posed by antibiotic resistance.
2. To assess the prevalence of citrate and TSI in E. coli isolated from urine to evaluate the impact of antibiotics according to Clinical and Laboratory Standards Institute (CLSI 2023) guidelines.
Study Design: Cross-sectional study.
Study Place: Tertiary Care Hospital, Al Nafees Medical Hospital, Islamabad, Pakistan.
Study Duration: March 2023 to October 2023.
Methodology: Informed consent was obtained from the microbiology lab of Al Nafees Medical College. The study utilized biochemical tests, including citrate and TSI, for identification and differentiation of E. coli based on metabolic characteristics. A total of 50 urine samples were collected for isolation and identification of E. coli. The Kirby-Bauer disc diffusion technique was employed to determine antibiotic susceptibility, identifying nitrofurantoin and Fosfomycin as the most effective choices for bacterial infections.
Results: Antibiotic efficacy assessments revealed nitrofurantoin as notably effective, surpassing other antibiotics according to CLSI guidelines. In contrast, ciprofloxacin demonstrated the lowest efficacy among the tested antibiotics. The research highlights the importance of judicious antibiotic selection for optimal therapeutic outcomes in clinical settings, emphasizing the need for continuous monitoring and optimization of antibiotic treatment strategies.
References
Abdu, A., Kachallah, M., & Bolus, D. Y. (2018). Antibiotic susceptibility patterns of Uropathogenic Escherichia coli among patients with urinary tract infections in a tertiary care hospital in Maiduguri, North Eastern, Nigeria. Journal of Bioscience and Biotechnology Discovery, 3(1), 14–24. https://doi.org/10.31248/jbbd2017.060
Afema, J. A., Davis, M. A., & Sischo, W. M. (2019). Antimicrobial use policy change in pre-weaned dairy calves and its impact on antimicrobial resistance in commensal Escherichia coli: a cross sectional and ecological study. BMC Microbiology, 19(1). https://doi.org/10.1186/s12866-019-1576-6
Allison, D. G., & Lambert, P. A. (2024). Modes of action of antibacterial agents. Academic Press, 597–614. https://doi.org/10.1016/b978-0-12-818619-0.00133-7
Bader, M. S., Loeb, M., & Brooks, A. A. (2016). An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgraduate Medicine, 129(2), 242–258. https://doi.org/10.1080/00325481.2017.1246055
Bányai, A., Farkas, E., Jankovics, H., Székács, I., Tóth, E. L., Vonderviszt, F., Horváth, R., Varga, M., & Fürjes, P. (2023). Dean-Flow Affected Lateral Focusing and Separation of Particles and Cells in Periodically Inhomogeneous Microfluidic Channels. Sensors, 23(2), 800–800. https://doi.org/10.3390/s23020800
Beveridge, T. J. (1999). Structures of Gram-Negative Cell Walls and Their Derived Membrane Vesicles. Journal of Bacteriology, 181(16), 4725–4733. https://doi.org/10.1128/jb.181.16.4725-4733.1999
Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 25(6), 1340. https://doi.org/10.3390/molecules25061340
Croxen, M. A., Law, R. J., Scholz, R., Keeney, K. M., Wlodarska, M., & Finlay, B. B. (2013). Recent Advances in Understanding Enteric Pathogenic Escherichia coli. Clinical Microbiology Reviews, 26(4), 822–880. https://doi.org/10.1128/cmr.00022-13
Debnath, S. K., Debnath, M., & Srivastava, R. (2022). Opportunistic etiological agents causing lung infections: emerging need to transform lung-targeted delivery. Heliyon, 8(12), e12620. https://doi.org/10.1016/j.heliyon.2022.e12620
Ebert, M. (2018). Hygiene Principles to Avoid Contamination/Cross-Contamination in the Kitchen and During Food Processing. Staphylococcus Aureus, 217–234. https://doi.org/10.1016/b978-0-12-809671-0.00011-5
Ezechukwu, C. (2019). Abstracts of Proceedings: 50th Annual General and Scientific Conference of the Paediatrics Association of Nigeria (PANCONF), 24th-26th January, 2019. Nigerian Journal of Paediatrics, 46(2), 73-121.
Gelaw, L. Y., Bitew, A. A., Gashey, E. M., & Ademe, M. N. (2022). Ceftriaxone resistance among patients at GAMBY teaching general hospital. Scientific Reports, 12(1), 12000. https://doi.org/10.1038/s41598-022-16132-3
Gorbach, S. L., Kean, B. H., Evans, D. G., Evans, D. J., & Bessudo, D. (1975). Travelers’ Diarrhea and ToxigenicEscherichia coli. New England Journal of Medicine, 292(18), 933–936. https://doi.org/10.1056/nejm197505012921801
Goulart, D. B. (2021). Urinary tract infection caused by antibiotic-resistant uropathogenic Escherichia coli: a major public health concern. Research, Society and Development, 10(16), 1–26. https://doi.org/10.33448/rsd-v10i16.23190
Holmes, C. L., Anderson, M. T., Mobley, H. L. T., & Bachman, M. A. (2021). Pathogenesis of Gram-Negative Bacteremia. Clinical Microbiology Reviews, 34(2), 10–128. https://doi.org/10.1128/CMR.00234-20
Idayat, T. G. (2015). Antibacterial attributes of extracts of Phyllantus amarus and Phyllantus niruri on Escherichia coli the causal organism of urinary tract infection. Journal of Pharmacognosy and Phytotherapy, 7(5), 80–86. https://doi.org/10.5897/jpp2014.0332
Johnson, L., Sabel, A., Burman, W. J., Everhart, R. M., Rome, M., MacKenzie, T. D., Rozwadowski, J., Mehler, P. S., & Price, C. S. (2008). Emergence of Fluoroquinolone Resistance in Outpatient Urinary Escherichia coli Isolates. The American Journal of Medicine, 121(10), 876–884. https://doi.org/10.1016/j.amjmed.2008.04.039
Li, X.-Z., Plésiat, P., & Nikaido, H. (2015). The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clinical Microbiology Reviews, 28(2), 337–418. https://doi.org/10.1128/cmr.00117-14
Musa, L., Casagrande Proietti, P., Branciari, R., Menchetti, L., Bellucci, S., Ranucci, D., Marenzoni, M. L., & Franciosini, M. P. (2020). Antimicrobial Susceptibility of Escherichia coli and ESBL-Producing Escherichia coli Diffusion in Conventional, Organic and Antibiotic-Free Meat Chickens at Slaughter. Animals, 10(7), 1215. https://doi.org/10.3390/ani10071215
Ortega, M., Marco, F., Soriano, A., Almela, M., Martínez, J. A., Muñoz, A., & Mensa, J. (2009). Analysis of 4758 Escherichia coli bacteraemia episodes: predictive factors for isolation of an antibiotic-resistant strain and their impact on the outcome. Journal of Antimicrobial Chemotherapy, 63(3), 568–574. https://doi.org/10.1093/jac/dkn514
Ramírez-Larrota, J. S., & Eckhard, U. (2022). An Introduction to Bacterial Biofilms and Their Proteases, and Their Roles in Host Infection and Immune Evasion. Biomolecules, 12(2), 306. https://doi.org/10.3390/biom12020306
Saeed, N. K., Al Khawaja, S., & Al-Biltagi, M. (2021). Antimicrobial Susceptibilities of Urinary Extended-spectrum β-lactamase Escherichia coli to Fosfomycin. Oman Medical Journal, 36(6), e314–e314. https://doi.org/10.5001/omj.2021.95
Swetha, M., Ravindranath, C., & Divya, R. (2022). Antimicrobial susceptibility pattern in Escherichia coli causing urinary tract infection among children. International Journal of Medical Reviews and Case Reports, 6(18), 69. https://doi.org/10.5455/ijmrcr.172-1661840478
Totsika, M., Gomes Moriel, D., Idris, A., A. Rogers, B., J. Wurpel, D., Phan, M.-D., L. Paterson, D., & A. Schembri, M. (2012). Uropathogenic Escherichia coli Mediated Urinary Tract Infection. Current Drug Targets, 13(11), 1386–1399. https://doi.org/10.2174/138945012803530206
Viegas, C., Moniz, G., Pargana, J., Marques, S., Resende, C., Martins, C., Arez, A. P., Ceratto, N., & Viegas, S. (2020). Biodiversity and health: investing in biodiversity protection towards health gains. Handle.net. https://doi.org/9789897162787
Zalewska-Piątek, B., & Piątek, R. (2020). Phage Therapy as a Novel Strategy in the Treatment of Urinary Tract Infections Caused by E. Coli. Antibiotics, 9(6), 304. https://doi.org/10.3390/antibiotics9060304
Zhang, J., Su, P., Chen, H., Qiao, M., Yang, B., & Zhao, X. (2023). Impact of reactive oxygen species on cell activity and structural integrity of Gram-positive and Gram-negative bacteria in electrochemical disinfection system. Chemical Engineering Journal, 451, 138879. https://doi.org/10.1016/j.cej.2022.138879
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Indus Journal of Bioscience Research
This work is licensed under a Creative Commons Attribution 4.0 International License.