Exploring the Role of Artificial Light and Tanning for Skin Cancer

Authors

  • Muhammad Majid Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
  • Abdul Qayoom Medical College, Tianjin University, Tianjin, China.
  • Ali Haider Department of Chemistry, Superior University Lahore, Punjab, Pakistan.

DOI:

https://doi.org/10.70749/ijbr.v2i02.454

Keywords:

Skin Cancer, Artificial Light, Tanning, Molecular mechanisms, Tumor Progression and Development, Treatment Approaches

Abstract

Skin cancer is a complex health condition with a high mortality rate all over the world. The present review article examines the relationship between artificial light exposure, tanning practices, and skin cancer. Artificial light exposure and tanning practices have been linked to various health concerns, particularly skin cancer. Artificial light sources that initiate and progress skin cancers are blue light, laptops, smartphones, and personal computers, leading to significant impacts on the human body. Artificial light exposure and tanning practices have been linked to various health concerns, particularly skin cancer. Both artificial light sources, such as tanning beds) and natural sunlight emit UVA and UVB rays, which can damage DNA in skin cells, leading to mutations that can develop into skin cancer. Tanning beds, in particular, pose a significant risk due to their high levels of UVA radiation. In addition, skin cancer was induced only in the mice exposed to blue light. Long-term blue light irradiation also increased the migration of neutrophils and macrophages involved in carcinogenesis in the skin. The review article also summarized the mechanisms of action of these factors in the progression and development of skin cancer as well.

References

Abubakar, M. (2024). Overview of skin cancer and risk factors. International Journal of General Practice Nursing, 2(3), 42-56. https://doi.org/10.26689/ijgpn.v2i3.8114

Pfeifer, G. P., & Jin, S. (2024). Methods and applications of genome-wide profiling of DNA damage and rare mutations. Nature Reviews Genetics, 25(12), 846-863. https://doi.org/10.1038/s41576-024-00748-4

Congues, F., Wang, P., Lee, J., Lin, D., Shahid, A., Xie, J., & Huang, Y. (2024). Targeting aryl hydrocarbon receptor to prevent cancer in barrier organs. Biochemical Pharmacology, 223, 116156. https://doi.org/10.1016/j.bcp.2024.116156

Abubakar, M., & Rehman, B. (2024). Roles of mutant TP53 gene in cancer development and progression. Proceedings of Anticancer Research, 8(5), 165-181. https://doi.org/10.26689/par.v8i5.7826

Rabiei, M., Masoumi, S. J., Haghani, M., Nematolahi, S., Rabiei, R., & Mortazavi, S. M. (2024). Do blue light filter applications improve sleep outcomes? A study of smartphone users’ sleep quality in an observational setting. Electromagnetic Biology and Medicine, 43(1-2), 107-116. https://doi.org/10.1080/15368378.2024.2327432

Sun, S., & Chen, G. (2022). Treatment of circadian rhythm sleep–wake disorders. Current Neuropharmacology, 20(6), 1022-1034. https://doi.org/10.2174/1570159x19666210907122933

Hirzle, T., Fischbach, F., Karlbauer, J., Jansen, P., Gugenheimer, J., Rukzio, E., & Bulling, A. (2022). Understanding, addressing, and analysing digital eye strain in virtual reality head-mounted displays. ACM Transactions on Computer-Human Interaction, 29(4), 1-80. https://doi.org/10.1145/3492802

Rehman, B., Abubakar, M., Kiani, M. N., & Ayyoub, R. (2024). Analysis of genetic alterations in TP53 gene in breast cancer – A secondary publication. Proceedings of Anticancer Research, 8(3), 25-35. https://doi.org/10.26689/par.v8i3.6720

Antemie, R., Samoilă, O. C., & Clichici, S. V. (2023). Blue light—Ocular and systemic damaging effects: A narrative review. International Journal of Molecular Sciences, 24(6), 5998. https://doi.org/10.3390/ijms24065998

Ruan, W., Yuan, X., & Eltzschig, H. K. (2021). Circadian rhythm as a therapeutic target. Nature Reviews Drug Discovery, 20(4), 287-307. https://doi.org/10.1038/s41573-020-00109-w

Sadowska, M., Narbutt, J., & Lesiak, A. (2021). Blue light in dermatology. Life, 11(7), 670. https://doi.org/10.3390/life11070670

Sengupta, S., Abhinav, N., Singh, S., Dutta, J., Mabalirajan, U., Kaliyamurthy, K., Mukherjee, P. K., Jaisankar, P., & Bandyopadhyay, A. (2022). Standardised Sonneratia apetala buch.-ham. fruit extract inhibits human neutrophil elastase and attenuates elastase-induced lung injury in mice. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.1011216

Pérez-Figueroa, E., Álvarez-Carrasco, P., Ortega, E., & Maldonado-Bernal, C. (2021). Neutrophils: Many ways to die. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.631821

Liu, X., Li, T., Chen, H., Yuan, L., & Ao, H. (2024). Role and intervention of PAD4 in NETs in acute respiratory distress syndrome. Respiratory Research, 25(1). https://doi.org/10.1186/s12931-024-02676-7

Hu, W., Lee, S. M., Bazhin, A. V., Guba, M., Werner, J., & Nieß, H. (2022). Neutrophil extracellular traps facilitate cancer metastasis: Cellular mechanisms and therapeutic strategies. Journal of Cancer Research and Clinical Oncology, 149(5), 2191-2210. https://doi.org/10.1007/s00432-022-04310-9

Hashimoto, S., Hashimoto, A., Muromoto, R., Kitai, Y., Oritani, K., & Matsuda, T. (2022). Central roles of STAT3-mediated signals in onset and development of cancers: Tumorigenesis and Immunosurveillance. Cells, 11(16), 2618. https://doi.org/10.3390/cells11162618

Starska-Kowarska, K. (2023). The role of different immunocompetent cell populations in the pathogenesis of head and neck cancer—Regulatory mechanisms of pro- and anti-cancer activity and their impact on immunotherapy. Cancers, 15(6), 1642. https://doi.org/10.3390/cancers15061642

Ge, G., Wang, Y., Xu, Y., Pu, W., Tan, Y., Liu, P., Ding, H., Lu, Y., Wang, J., Liu, W., & Ma, Y. (2023). Induced skin aging by blue-light irradiation in human skin fibroblasts via TGF-β, JNK and EGFR pathways. Journal of Dermatological Science, 111(2), 52-59. https://doi.org/10.1016/j.jdermsci.2023.06.007

Erlich, J. R., To, E. E., Liong, S., Brooks, R., Vlahos, R., O'Leary, J. J., Brooks, D. A., & Selemidis, S. (2020). Targeting evolutionary conserved oxidative stress and Immunometabolic pathways for the treatment of respiratory infectious diseases. Antioxidants & Redox Signaling, 32(13), 993-1013. https://doi.org/10.1089/ars.2020.8028

Suliman, R. S., Alghamdi, S. S., Ali, R., Aljatli, D., Aljammaz, N. A., Huwaizi, S., Suliman, R., Kahtani, K. M., Albadrani, G. M., Barhoumi, T., Altolayyan, A., & Rahman, I. (2022). The role of myrrh metabolites in cancer, inflammation, and wound healing: Prospects for a multi-targeted drug therapy. Pharmaceuticals, 15(8), 944. https://doi.org/10.3390/ph15080944

Mantovani, A., Allavena, P., Marchesi, F., & Garlanda, C. (2022). Macrophages as tools and targets in cancer therapy. Nature Reviews Drug Discovery, 21(11), 799-820. https://doi.org/10.1038/s41573-022-00520-5

Haghani, M., Abbasi, S., Abdoli, L., Shams, S. F., Baha’addini Baigy Zarandi, B. F., Shokrpour, N., Jahromizadeh, A., Mortazavi, S. A., & Mortazavi, S. M. J. (2024). Blue Light and Digital Screens Revisited: A New Look at Blue Light from the Vision Quality, Circadian Rhythm and Cognitive Functions Perspective. Journal of Biomedical Physics and Engineering, 14(3), 213–228. https://doi.org/10.31661/jbpe.v0i0.2106-1355

Abubakar, M., Khatoon, N., & Saddique, A. (2024). Skin Cancer and Human Papillomavirus. Journal of Population Therapeutics and Clinical Pharmacology, 31(2), 790-816.

Ascsillán, A. A., & Kemény, L. V. (2024). The skin–brain Axis: From UV and pigmentation to behaviour modulation. International Journal of Molecular Sciences, 25(11), 6199. https://doi.org/10.3390/ijms25116199

Guitera, P. (2023). Melanoma/Oncology. Australas J Dermatol, 64(1), 77-96. https://onlinelibrary.wiley.com/doi/am-pdf/10.1111/ajd.14045

Abubakar, M., Hameed, Y., Kiani, M. N., & Aftab, A. (2024). Common features between aging and cancer: A narrative review. Aging Advances, 1(2), 118-134. https://doi.org/10.4103/agingadv.agingadv-d-24-00023

Dessinioti, C., & Stratigos, A. J. (2022). An epidemiological update on indoor tanning and the risk of skin cancers. Current Oncology, 29(11), 8886-8903. https://doi.org/10.3390/curroncol29110699

Yu, Z., Zheng, M., Fan, H., Liang, X., & Tang, Y. (2024). Ultraviolet (UV) radiation: A double-edged sword in cancer development and therapy. Molecular Biomedicine, 5(1). https://doi.org/10.1186/s43556-024-00209-8

Kumari, J., Das, K., Babaei, M., Rokni, G. R., & Goldust, M. (2023). The impact of blue light and digital screens on the skin. Journal of Cosmetic Dermatology, 22(4), 1185-1190. https://doi.org/10.1111/jocd.15576

Abubakar, M. (2024). Exploring the pivotal association of AI in cancer stem cells detection and treatment. Proceedings of Anticancer Research, 8(5), 52-63. https://doi.org/10.26689/par.v8i5.7082

Ullah, A., Arif, M., Waqas, M., Hasnain, M., Saira, A., Rariq, R., Shahzad, F., & Khaliq, H. (2024). Exploring the role of chemicals and environmental factors for cancer proliferation. OALib, 11(12), 1-20. https://doi.org/10.4236/oalib.1112607

Han, J., Li, T., Wang, X., Zhang, X., Bai, X., Shao, H., Wang, S., Hu, Z., Wu, J., & Leng, P. (2022). AmMYB24 regulates floral terpenoid biosynthesis induced by blue light in snapdragon flowers. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.885168

Lohan, S., Kröger, M., Schleusener, J., Darvin, M., Lademann, J., Streit, I., & Meinke, M. (2021). Characterization of radical types, penetration profile and distribution pattern of the topically applied photosensitizer THPTS in porcine skin ex vivo. European Journal of Pharmaceutics and Biopharmaceutics, 162, 50-58. https://doi.org/10.1016/j.ejpb.2021.03.002

Purbhoo-Makan, M., Houreld, N. N., & Enwemeka, C. S. (2022). The effects of blue light on human fibroblasts and diabetic wound healing. Life, 12(9), 1431. https://doi.org/10.3390/life12091431

Olinski, L. E., Lin, E. M., & Oancea, E. (2020). Illuminating insights into opsin 3 function in the skin. Advances in Biological Regulation, 75, 100668. https://doi.org/10.1016/j.jbior.2019.100668

Zhang, X., & Zhao, X. (2024). The impact of blue light exposure on public health and protective strategies. Current Research in Medical Sciences, 3(2), 60-66. https://doi.org/10.56397/crms.2024.06.08

Solano, F. (2020). Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. Molecules, 25(7), 1537. https://doi.org/10.3390/molecules25071537

He, X., Jin, S., Dai, X., Chen, L., Xiang, L., & Zhang, C. (2023). The emerging role of visible light in melanocyte biology and skin pigmentary disorders: Friend or foe? Journal of Clinical Medicine, 12(23), 7488. https://doi.org/10.3390/jcm12237488

Hasnain, M., Qayoom, A., Saira, A., Hussain, M., Rehman, A., Khaliq, H., Tariq, R., & Ullah, A. (2024). Implications of heavy metals on human cancers. OALib, 11(12), 1-23. https://doi.org/10.4236/oalib.1112644

Carvalho, C., Silva, R., Melo, T. M., Inga, A., & Saraiva, L. (2024). P53 and the ultraviolet radiation-induced skin response: Finding the light in the darkness of triggered carcinogenesis. Cancers, 16(23), 3978. https://doi.org/10.3390/cancers16233978

Andrés, C. M., Pérez de la Lastra, J. M., Andrés Juan, C., Plou, F. J., & Pérez-Lebeña, E. (2023). Superoxide anion chemistry—Its role at the core of the innate immunity. International Journal of Molecular Sciences, 24(3), 1841. https://doi.org/10.3390/ijms24031841

Ren, Q., Chen, J., Wesseling, S., Bouwmeester, H., & Rietjens, I. M. (2024). Physiologically based kinetic modeling-facilitated quantitative in vitro to in vivo extrapolation to predict the effects of aloe-emodin in rats and humans. Journal of Agricultural and Food Chemistry, 72(29), 16163-16176.

Aitken, R. J., Drevet, J. R., Moazamian, A., & Gharagozloo, P. (2022). Male infertility and oxidative stress: A focus on the underlying mechanisms. Antioxidants, 11(2), 306. https://doi.org/10.3390/antiox11020306

Ayenigbara, I. O. (2023). Risk-reducing measures for cancer prevention. Korean Journal of Family Medicine, 44(2), 76-86. https://doi.org/10.4082/kjfm.22.0167

Bahrami, H., & Tafrihi, M. (2023). Global trends of cancer: The role of diet, lifestyle, and environmental factors. Cancer Innovation, 2(4), 290-301. https://doi.org/10.1002/cai2.76

Yousaf, A., Tasneem, N., Mustafa, A., Fatima, R., Nabia, N., Khan, R. A., Abdulbasit, H., Abubakar, M., Asadullah, A., Rizwan, R., & Baqa-ur-Rehman, B. (2021). Gastric cancer associated risk factors and prevalence in Pakistan. ASEAN Journal of Science and Engineering, 1(2), 73-78. https://doi.org/10.17509/ajse.v1i2.41124

Aftab, A., Z.U. Khan, and S. Ali, Production, kinetics and immobilization of microbial invertases for some commercial applications-a review. Int J Biol Biotech, 2021. 18(2): p. 377-388.

Davoodvandi, A., Nikfar, B., Reiter, R. J., & Asemi, Z. (2022). Melatonin and cancer suppression: Insights into its effects on DNA methylation. Cellular & Molecular Biology Letters, 27(1). https://doi.org/10.1186/s11658-022-00375-z

Sood, S., Chand, K., Kohli, A., Kanga, S., Singh, S. K., & Meraj, G. (2024). Tourism and protected areas in India—A symbiotic relationship. Geospatial Technology for Natural Resource Management, 287-301. https://doi.org/10.1002/9781394167494.ch11

Schroer, S., Huggins, B. J., Azam, C., & Hölker, F. (2020). Working with inadequate tools: Legislative shortcomings in protection against ecological effects of artificial light at night. Sustainability, 12(6), 2551. https://doi.org/10.3390/su12062551

Davis, L. K., Bumgarner, J. R., Nelson, R. J., & Fonken, L. K. (2023). Health effects of disrupted circadian rhythms by artificial light at night. Policy Insights from the Behavioral and Brain Sciences, 10(2), 229-236. https://doi.org/10.1177/23727322231193967

Walker, W. H., Bumgarner, J. R., Walton, J. C., Liu, J. A., Meléndez-Fernández, O. H., Nelson, R. J., & DeVries, A. C. (2020). Light pollution and cancer. International Journal of Molecular Sciences, 21(24), 9360. https://doi.org/10.3390/ijms21249360

Al-Naggar, R., & Al-Maktari, L. (2022). Artificial light at night and breast cancer. Light Pollution, Urbanization and Ecology. https://doi.org/10.5772/intechopen.96896

Menéndez-Velázquez, A., Morales, D., & García-Delgado, A. B. (2022). Light pollution and circadian misalignment: A healthy, blue-free, white light-emitting diode to avoid Chronodisruption. International Journal of Environmental Research and Public Health, 19(3), 1849. https://doi.org/10.3390/ijerph19031849

Rajput, S., Naithani, M., Meena, K., & Rana, S. (2021). Light pollution: Hidden perils in light and links to cancer. Sleep and Vigilance, 5(1), 5-16. https://doi.org/10.1007/s41782-020-00123-3

Downloads

Published

2024-12-31

How to Cite

Majid, M., Abdul Qayoom, & Haider, A. (2024). Exploring the Role of Artificial Light and Tanning for Skin Cancer. Indus Journal of Bioscience Research, 2(02), 1584–1594. https://doi.org/10.70749/ijbr.v2i02.454